PsychoPy can also store and use information about the gamma correction required for your monitor. If you have a Spectrascan PR650, PR655/PR670, Minolta LS100/LS110 or a CRS ColorCAL you can perform an automated calibration in which PsychoPy will measure the necessary gamma value to be applied to your monitor. Alternatively this can be added manually into the grid to the right of the Monitor Center. To run a calibration, connect the photometer via the serial port and, immediately after turning it on press the Get Photometer button in the Monitor Center.
For all those who have told you that you can enter the out of band frequencies with Lab RSS, they're lying. There have been many people who have tried, and they all come up with the same result... "Value outside range for this model. Please consult service manual."
Spectrascan 650 Manual
Also, you have to purchase a new plastic front panel and buttons. The buttons available are listed and depicted in the various service manuals and there are some nice variations of legend and icon. You can find part numbers for most of the buttons in the chart below. The part number for plastic A7 front is also listed.
This info may be useful to those that want to do packet radio or other forms of data using a Spectra. Some of the service manuals identify this option so you can do it for yourself. It consists of moving some 0ohm smt jumpers in the radio.
The Ultraviolet-Visible Spectrophotometer (UVVIS) automation system accomplishes 'on-line' spectrophotometric quality assurance determinations, report generations, plot generations and data reduction for chlorophyll or color analysis. This system also has the capability to process manually entered data for the analysis of chlorophyll or color. For each program of the UVVIS system, this document contains a program description, flowchart, variable dictionary, code listing, and symbol cross-reference table. Also included are descriptions of file structures and of routines common to all automated analyses. The programs are written in Data General extended BASIC, Revision 4.3, under the RDOS operating systems, Revision 6.2. The BASIC code has been enhanced for real-time data acquisition, which is accomplished by CALLS to assembly language subroutines. Two other related publications are 'An Ultraviolet-Visible Spectrophotometer Automation System - Part I Functional Specifications,' and 'An Ultraviolet-Visible Spectrophotometer Automation System - Part II User's Guide.'
Sickle haemoglobin (HbS) is known to offer considerable protection against falciparum malaria. However, the mechanism of protection is not yet completely understood. In this study, we investigate how the presence of the sickle cell trait affects the haematological profile of AS persons with malaria, in comparison with similarly infected persons with HbAA. This study is based on the hypothesis that the sickle cell trait plays a protective role against malaria. Children from an endemic malaria transmission area in Yemen were enrolled in this study. Hematological parameters were estimated using manual methods, the percentage of parasite density on stained thin smear was calculated, haemoglobin genotypes were determined on paper electrophoresis, ferritin was measured using enzyme-linked immunosorbent assay, serum iron and TIBC were assayed using spectrophotometer, transferrin saturation index was calculated by dividing serum iron by TIBC and expressing the result as a percentage. Haematological parameters were compared in HbAA- and HbAS-infected children. Falciparum malaria parasitaemia was confirmed in the blood smears of 62 children, 44 (55.7%) of AA and 18 (37.5%) AS, so there was higher prevalence in HbAA children (P = 0.047). Parasite density was lower in HbAS- than HbAA-infected children (P = 0.003). Anaemia was prominent in malaria-infected children, with high proportions of moderate and severe forms in HbAA (P = 0.001). The mean levels of haemoglobin, packed cell volume, reticulocyte count, platelets count, lymphocytes, eosinophils, and serum iron were significantly lower while total leukocytes, immature granulocytes, monocytes, erythrocyte sedimentation rate, transferrin saturation, and serum ferritin were significantly higher in HbAA-infected children than HbAS-infected children. Infection with Plasmodium falciparum malaria caused more significant haematological alterations of HbAA children than HbAS. This study supports the observation that sickle cell trait
The objective of this study was to investigate interexaminer reliability in the clinical measurement of the L*C*h* (lightness/value, chroma, hue) values of anterior teeth using a spectrophotometer (Vita Easyshade). The basic color of the maxillary right central incisors and canines of 23 subjects was spectrophotometrically determined by 4 clinicians and an experienced user (development manager) of the spectrophotometer. Also, to analyze the effect of different training with the instrument on interexaminer reliability, 2 of the clinicians were instructed in the use of the spectrophotometer by the experienced examiner, whereas the others instructed themselves by studying the operating manual. Agreement between all examiners was acceptable to excellent (intraclass coefficient > 0.4). The mean value of the measured differences for the central incisors of all subjects for L* values was 5 (for C* = 3.8, h* = 2.7 degrees) and for canines, the mean L* was 4.5 (C* = 3, h* = 1.6 degrees). Results from comparison of the 2 different training methods were inconsistent. Agreement with the experienced examiner ranged from not acceptable (C* values for incisors of self-instructed examiners) to excellent. The distribution of the measurements of 1 subject could lead to deviations in color, probably with clinical impact. For canines, the measurements were at least equally reproducible (in some cases significantly more reproducible) compared to central incisors. Because of the small number of examiners and the inconsistent results, it was not possible to reach a definite conclusion about the effect of different training methods on interexaminer reliability.
Nucleic acid quantitation procedures have advanced significantly in the last three decades. More and more, molecular biologists require consistent small-volume analysis of nucleic acid samples for their experiments. The BioSpec-nano provides a potential solution to the problems of inaccurate, non-reproducible results, inherent in current DNA quantitation methods, via specialized optics and a sensitive PDA detector. The BioSpec-nano also has automated functionality such that mounting, measurement, and cleaning are done by the instrument, thereby eliminating tedious, repetitive, and inconsistent placement of the fiber optic element and manual cleaning. In this study, data is presented on the quantification of DNA and protein, as well as on measurement reproducibility and accuracy. Automated sample contact and rapid scanning allows measurement in three seconds, resulting in excellent throughput. Data analysis is carried out using the built-in features of the software. The formula used for calculating DNA concentration is: Sample Concentration = DF (OD260-OD320) NACF (1) Where DF = sample dilution factor and NACF = nucleic acid concentration factor. The Nucleic Acid concentration factor is set in accordance with the analyte selected. Protein concentration results can be expressed as μg/mL or as moles/L by entering e280 and molecular weight values respectively. When residue values for Tyr, Trp and Cysteine (S-S bond) are entered in the e280Calc tab, the extinction coefficient values are calculated as e280 = 5500 x (Trp residues) + 1490 x (Tyr residues) + 125 x (cysteine S-S bond). The e280 value is used by the software for concentration calculation. In addition to concentration determination of nucleic acids and protein, the BioSpec-nano can be used as an ultra micro-volume spectrophotometer for many other analytes or as a standard spectrophotometer using 5 mm pathlength cells.
Nucleic Acid quantitation procedures have advanced significantly in the last three decades. More and more, molecular biologists require consistent small-volume analysis of nucleic acid samples for their experiments. The BioSpec-nano provides a potential solution to the problems of inaccurate, non-reproducible results, inherent in current DNA quantitation methods, via specialized optics and a sensitive PDA detector. The BioSpec-nano also has automated functionality such that mounting, measurement, and cleaning are done by the instrument, thereby eliminating tedious, repetitive, and inconsistent placement of the fiber optic element and manual cleaning. In this study, data is presented on the quantification of DNA and protein, as well as on measurement reproducibility and accuracy. Automated sample contact and rapid scanning allows measurement in three seconds, resulting in excellent throughput. Data analysis is carried out using the built-in features of the software. The formula used for calculating DNA concentration is: Sample Concentration = DF (OD260-OD320) NACF (1) Where DF = sample dilution factor and NACF = nucleic acid concentration factor. The Nucleic Acid concentration factor is set in accordance with the analyte selected1. Protein concentration results can be expressed as μg/ mL or as moles/L by entering e280 and molecular weight values respectively. When residue values for Tyr, Trp and Cysteine (S-S bond) are entered in the e280Calc tab, the extinction coefficient values are calculated as e280 = 5500 x (Trp residues) + 1490 x (Tyr residues) + 125 x (cysteine S-S bond). The e280 value is used by the software for concentration calculation. In addition to concentration determination of nucleic acids and protein, the BioSpec-nano can be used as an ultra micro-volume spectrophotometer for many other analytes or as a standard spectrophotometer using 5 mm pathlength cells. PMID:21372788 2ff7e9595c
Comments